If it's not what You are looking for type in the equation solver your own equation and let us solve it.
50x^2-2x-0.4=0
a = 50; b = -2; c = -0.4;
Δ = b2-4ac
Δ = -22-4·50·(-0.4)
Δ = 84
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{84}=\sqrt{4*21}=\sqrt{4}*\sqrt{21}=2\sqrt{21}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{21}}{2*50}=\frac{2-2\sqrt{21}}{100} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{21}}{2*50}=\frac{2+2\sqrt{21}}{100} $
| 2(3-6b)=6b+5 | | -2(8r+6)=-140 | | 3x-7=6x-7 | | 3x+10/7=13 | | 4=n+6-8 | | 3x+5+7x-+2= | | x-10=-9x+2 | | x^2+x+4=-x^2+7 | | 1/0.25x^2+7=2.5x^2+8.5 | | 5(3w-4)=40 | | 200+5x=215+7x | | 5(c-17)=-10 | | 3+r/4=-r/8 | | 39=64-5a | | v·12=12·66 | | 2y/5=4/3 | | (57−z)·98=57·98−53·98 | | 6x+18=4x+25 | | (11+96)+y=11+(96+73) | | 55=v+0 | | 3x-2=-3x+10 | | 47+95=95+k | | (35+32)+58=35+(32+q) | | 27+32x=39+29x | | |x-5|+8=9 | | 3y/18=15 | | -3*2x=180 | | -3(C-4)+Z=4c-12 | | -3n/5=15 | | 30(-4+3p)=-160 | | 5(b−85)=40 | | 4(x-2)+5x=3(x=3)-11 |